Complexes of CO₂, COS, and CS₂ with the Super Lewis Acid BH₄⁺ Contrasted with Extremely Weak Complexations with BH₃: Theoretical Calculations and Experimental Relevance¹

Golam Rasul, G. K. Surya Prakash, and George A. Olah*

Contribution from the Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

Received April 12, 1999

Abstract: Structures and energies of the complexes of CO₂, COS, and CS₂ with BH₄⁺, a super Lewis acid (1–4a), were calculated with the density functional theory (DFT) at the B3LYP/6-311+G** level. Each of the complexes 1–4a contains a hypercoordinate boron with a three-center two-electron (3c-2e) bond. Formation of 1–4a from the complexation of CO₂, COS, and CS₂ with BH₄⁺ was calculated to be exothermic by 26–42 kcal/mol. At the same B3LYP/6-311+G** level calculations indicate that complexation of CO₂, COS, and CS₂ with neutral BH₃ leads only to very weak complexes (1–4c) with relatively long B–O or B–S bonds. The computational results shed new light on related experimental studies of the ready and extremely mild superacid induced ionic hydrogenation of CO₂, COS, and CS₂ with NaBH₄ to methane.

Introduction

In preceding studies, one of us reported² the remarkable behavior of borohydride in superacids. Hydrogen-deuterium exchange studies prior to the liberation of hydrogen indicated protonation of BH_4^- to BH_5 . The nature of BH_5 was extensively studied theoretically.^{3,4}

In 1990, Olah and Wu observed⁵ the mild ionic hydrogenation of CO₂, COS, and CS₂ with sodium borohydride/trifluoromethanesulfonic acid to methane. It was suggested that superacid protolytically activated the carbon oxides (sulfides) and thus facilitated the reaction with the hydrogen donor systems (such as borohydride and dihydrogen).

We recently reported⁶ the calculated structures of the parent hexacoordinate boronium ion, BH_6^+ , which can be considered as a complex of BH_4^+ with H_2 (Scheme 1). The reaction of BH_4^+ and H_2 to form BH_6^+ was calculated to be exothermic by 16.7 kcal/mol.⁶ The reaction of BH_3 with H^+ to give BH_4^+ was calculated to be exothermic by as much as 137.9 kcal/mol.⁶ BH₃ and BH_4^+ are isoelectronic with CH_3^+ and CH_4^{2+} , respectively. These calculations indicated that BH_6^+ can be formed by the reaction of BH_4^+ and H_2 . As predicted, DePuy et al. were indeed able to prepare and observe the BH_6^+ experimentally in the gas phase by reacting BH_4^+ and H_2 .^{7,8} In comparison, the enthalpy of complexation of BH_3 and H_2 to give BH_5 is estimated to be exothermic by only 1.4 kcal/mol at 0 K and endothermic by 6.8 kcal/mol at room temperature.³

- (5) Olah, G. A.; Wu, A.-H. Synlett 1990, 599.
- (6) Rasul, G.; Olah, G. A. Inorg. Chem. 1997, 36, 1278.
- (7) DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E. J. Am. Chem.

Scheme 1

Lewis acid—base interactions are involved in many important catalytic reactions. Donor–acceptor complexes of the Lewis acid BH₃ have been the subject of many theoretical studies.⁹ Anane et al. reported ab initio molecular orbital study of a series of donor–acceptor complexes of BH₃ including BH₃X (X = NH₃, PH₃, H₂O, and H₂S).^{9a} Recently, we also reported¹⁰ the ab initio calculated structures and energies of the B–H protonated H₃-BX⁺ systems (X = NH₃, PH₃, OH₂, SH₂, and CO). Protonation of H₃BX to form H₄BX⁺ was calculated to be highly exothermic. In continuation of our work we now report our study of the complexes of the BH₄⁺ cation as well as neutral BH₃ with CO₂, COS, and CS₂ by the density functional theory (DFT) method.

Calculations

Calculations were carried out with the Gaussian 98 program system.¹¹ The geometry optimizations and frequency calculations were performed at the DFT¹² B3LYP¹³/6-311+G**¹⁴ level. From calculated frequencies, the optimized structures were characterized as minima (number of imaginary frequencies (NIMAG) = 0). Final energies were calculated at the B3LYP/6-311+G**//B3LYP/6-311+G** + ZPE (B3LYP/

⁽¹⁾ Chemistry in Superacids. 45. Part 44: Rasul, G.; Prakash, G. K. S.; Olah, G. A. *Inorg. Chem.* In press.

⁽²⁾ Olah, G. A.; Westerman, P. W.; Mo, Y. K.; Klopman, G. J. Am. Chem. Soc. 1972, 94, 7859.

⁽³⁾ Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. v. R. J. Chem. Phys. 1994, 101, 7625 and references therein.

⁽⁴⁾ Watts, J. D.; Bartlett, R. J. J. Am. Chem. Soc. 1995, 117, 825

<sup>Soc. 1997, 119, 427.
(8) DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E.; Krempp, M.; Damrauer, R. J. Am. Chem. Soc. 1998, 120, 5086.</sup>

^{(9) (}a) Anane, H.; Boutalib, A.; Tomas, F. J. Phys. Chem. 1997, 101, 7879.
(b) Jonas, V.; Frenking, G.; Reetz, M. T. J. Am. Chem. Soc. 1994, 116, 8741, 2900.
(c) Dapprich, S.; Frenking, G. J. Phys. Chem. 1995, 99, 9352.
(d) Sakai, S. J. Phys. Chem. 1995, 99, 9080.
(e) Umeyama, H.; Morokuma, K. J. Am. Chem. Soc. 1976, 98, 7208.
(f) Glendening, E. D.; Streitwieser, A. J. Chem. Phys. 1994, 100, 2900.
(g) Skancke, A.; Skancke, P. N. J. Phys. Chem. 1996, 100, 15079.
(h) Bühl, M.; Steinke, T.; Schleyer, P. v. R.; Boese, R. Angew. Chem. Int. Ed. Engl. 1991, 30, 1160.

⁽¹⁰⁾ Rasul, G.; Prakash, G. K. S.; Olah, G. A. Inorg. Chem. 1999, 38, 44.

Table 1. Total Energies (-au) and ZPE^a

	B3LYP/6-311+G**// B3LYP/6-311+G**	ZPE (kcal/mol)		B3LYP/6-311+G**// B3LYP/6-311+G**	ZPE (kcal/mol)
H_4BOCO^+ (1a)	215.54320	31.5	H ₃ BSCS (4c)	861.17650	22.2
H_2BOCO^+ (1b)	214.34758	20.4	BH ₃	26.62112	15.7
$H_3BOCO(1c)$	215.26992	24.9	BH_4^+	26.85011	21.3
H_4BOCS^+ (2a)	538.51306	29.9	CO_2	188.64692	7.0
H_2BOCS^+ (2b)	537.32288	18.9	COS	511.60013	5.5
$H_3BOCS(2c)$	538.22341	23.3	CS_2	834.55254	4.2
H_4BSCO^+ (3a)	538.50624	29.2	CO_2H^+ (1d)	188.85661	12.9
H_2BSCO^+ (3b)	537.31646	18.4	$SCOH^+$ (2d)	511.83612	11.4
$H_3BSCO(3c)$	538.22388	23.6	$OCSH^+$ (3d)	511.83936	10.1
H_4BSCS^+ (4a)	861.47245	27.7	CS_2H^+ (4d)	834.81312	8.8
H_2BSCS^+ (4b)	860.28574	17.1	H ₂	1.17957	6.1

^a Zero point vibrational energies (ZPE) at B3LYP/6-311+G**//B3LYP/6-311+G** scaled by a factor of 0.96.

Table 2. Thermodynamics of the Dissociation of $1-4a^a$

dissociation process	ΔH (kcal/mol)
$BH_4^+ + CO_2 \rightarrow BH_3 + CO_2H^+$ (1d)	+12.4
$H_4BOCO^+(1a) \rightarrow BH_4^+ + CO_2$	+25.8
$H_4BOCO^+(1a) \rightarrow H_2BOCO^+(1b) + H_2$	+5.1
$H_3BOCO (1c) \rightarrow BH_3 + CO_2$	-1.0
$BH_4^+ + COS \rightarrow BH_3 + SCOH^+ (2d)$	-4.1
$BH_4^+ + OCS \rightarrow BH_3 + OCSH^+ (\mathbf{3d})$	-7.4
H_4BOCS^+ (2a) $\rightarrow BH_4^+ + COS$	+36.3
H_4BOCS^+ (2a) \rightarrow H_2BOCS^+ (2b) $+$ H_2	+1.8
$H_3BOCS (2c) \rightarrow BH_3 + COS$	-0.7
$H_4BSCO^+(3a) \rightarrow BH_4^+ + COS$	+32.7
$H_4BSCO^+(3a) \rightarrow H_2BSCO^+(3b) + H_2$	+1.7
$H_3BSCO(3c) \rightarrow BH_3 + COS$	-0.8
$BH_4^+ + CS_2 \rightarrow BH_3 + CS_2H^+$ (4d)	-22.8
H_4BSCS^+ (4a) $\rightarrow BH_4^+ + CS_2$	+41.6
H_4BSCS^+ (4a) \rightarrow H_2BSCS^+ (4b) + H_2	+0.1
$H_3BSCS (4c) \rightarrow BH_3 + CS_2$	-0.5

^{*a*} At the B3LYP/6-311+G**//B3LYP/6-311+G** + ZPE level.

 $6-311+G^{**}/B3LYP/6-311+G^{**}$ level. Calculated energies are given in Table 1. Calculated frequencies are given in Table 3.

Results and Discussion

Complexation of CO₂ with BH₄⁺ leads to H₄BOCO⁺ (**1a**) which was found to be a stable minimum at the B3LYP/6-311+G** level. The C_s symmetry structure **1a** contains a threecenter two-electron (3c-2e) bond (Figure 1). The B–O bond distance of **1a** is 1.602 Å, 0.129 Å shorter than that found in H₃BOH₂ which indicates stronger B–O bonding in **1a** than in H₃BOH₂.¹⁰ The O–C–O bond angle is 177.1°. The C–O (BH₄) and C–O bond distances of **1a** are 1.192 and 1.133 Å, respectively, 0.031 Å longer and 0.028 Å shorter than C–O of CO₂. This indicates that the ion **1a** may be considered as a resonace hybrid of the oxonium and oxocarbenium ions (Scheme 2).

Fable 3.	B3LYP/6-311+G**	Calculated	Frequencies	and	IR
Intensities					

no.	frequencies, cm ⁻¹ (IR intensities, KM/mol)
1a	48 (23), 146 (3), 527 (129), 600 (33), 636 (63), 684 (31),
	712 (20), 827 (3), 948 (4), 1042 (11), 1093 (177),
	1222 (18), 1382 (86), 1729 (27), 2475 (856), 2654 (2),
	2776 (2), and 3454 (26)
1b	156 (5), 193 (0), 589 (64), 621 (40), 728 (184), 946 (40),
	1037 (47), 1183 (139), 1346 (147), 2462 (709), 2703 (6),
	and 2890 (6)
2a	49 (29), 129 (9), 471 (1), 494 (40), 588 (127), 684 (6),
	686 (16), 833 (4), 909 (35), 1004 (134), 1043 (11),
	1104 (202), 1215 (12), 1705 (24), 1999 (1194), 2340 (8),
	2750 (7), and 3499 (33)
2b	139 (7), 192 (1), 498 (29), 501 (1), 702 (111), 953 (46),
	1040 (48), 1052 (310), 1206 (88), 1938 (1089),
	2692 (21), and 2866 (18)
3a	124 (19), 146 (5), 461 (12), 474 (44), 524 (13), 527 (27),
	605 (8), 714 (27), 780 (11), 849 (10), 1026 (4),
	1061 (124), 1195 (6), 1665 (24), 2231 (505), 2635 (2),
	2/44 (0), and 3509 (44)
36	159 (3), 307 (2), 496 (6), 503 (1), 574 (121), 695 (10),
	830 (3), 949 (18), 1151 (67), 2259 (431), 2672 (2),
	and 2834 (2)
4a	112(22), 132(2), 378(2), 427(25), 499(10), 521(65),
	600(6), 623(33), 745(2), 814(28), 1020(2), 1055(182), 1188(8), 1552(420), 1648(22), 2620(7)
	1055(185), 1188(8), 1555(459), 1048(25), 2029(7), 2726(1), and 2522(60)
4 h	2/30(1), and $3332(00)145(0), 276(1), 428(1), 422(12), 601(18), 611(140)$
4D	(143 (0), 270 (1), 428 (1), 432 (12), 001 (18), 011 (140), 012 (0), 040 (21), 1151 (106), 1552 (286), 2668 (0)
	o15 (0) , 949 (21) , 1151 (100) , 1552 (580) , 2008 (9) , and 2824 (4)

At the same B3LYP/6-311+G** level calculations indicated that complexation of CO₂ with neutral BH₃ leads only to a very weak complex, **1c**, with a long B–O bond of 2.556 Å. Both BH₄⁺ and BH₃ contain an empty p-orbital which can formally accept an electron pair. However, only BH₄⁺ forms (due to greater electrostatic attraction) a stronger B–O bond with the relatively poor base such as CO₂. Consequently BH₄⁺ can be classified as a super Lewis acid, being a significantly stronger electron acceptor than BH₃.

As mentioned the ion BH_4^+ has been observed^{7,8} in the gas phase, and its formation by protonation of BH_3 was calculated to be exothermic by 137.9 kcal/mol.⁶ Our present calculations show that the formation of **1a** from the reaction of BH_4^+ and CO_2 is also exothermic by 25.8 kcal/mol (Scheme 3, Table 2). In comparison, formation of **1c** from BH_3 and CO_2 is endothermic by 1.0 kcal/mol (Table 2), and the formation of BH_6^+ from BH_4^+ and H_2 is exothermic by 16.7 kcal/mol.⁶ BH_6^+ has indeed been recently observed by DePuy et al. in the gas phase by reacting BH_4^+ with H_2 .^{7,8} We have also considered possible proton transfer from BH_4^+ to CO_2 which was, however, calculated to be unfavorable by 12.4 kcal/mol (Table 2). The related dissociation of **1a** into **1b** and H_2 was also calculated to

⁽¹¹⁾ Gaussian 98 (Revision A.5): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Pople, J. A., Gaussian, Inc., Pittsburgh, PA, 1998.

⁽¹²⁾ Žiegler, T. Chem. Rev. 1991, 91, 651.

⁽¹³⁾ Becke's three parameter hybrid method using the LYP correlation functional: Becke, A. D. J. Chem. Phys. **1993**, *98*, 5648.

⁽¹⁴⁾ Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley-Interscience: New York, 1986.

be unfavorable by 5.1 kcal/mol (Scheme 4, Table 2). The planar structure **1b** can be considered as a complex of CO_2 with BH_2^+ . These observations indicate that the complex **1a** is expected to be experimentally characterized in the gas phase.

Both O- and S-coordinated BH_4^+ -COS complexes H_4 -BOCS⁺ (**2a**) and H_4BSCO^+ (**3a**), respectively, with 3c-2e bonds were found to be stable minima on the potential energy surface. The O-coordinated C_s symmetry structure H_4BOCS^+ (**2a**) is only 3.6 kcal/mol more stable than the S-coordinated C_1 symmetry structure H_4BSCO^+ (**3a**). This can also be rationalized on the basis of thermodynamic grounds: B-O bonds are stronger than B-S bonds. Formation of **2a** from BH_4^+ and COS were calculated to be exothermic by 36.3 kcal/mol (Scheme 3, Table

X = OCO 1a, OCS 2a,

SCO 3a, SCS 4a

From the B3LYP/6-311+G** level of calculations it is apparent that complexations of O- and S-coordinated COS with

Scheme 4

neutral BH₃ lead to very weak complexes 2c and 3c with long B–O (2.520 Å) and B–S (2.681 Å) bonds, respectively.

We have also calculated the structure of the $BH_4^+-CS_2$ complex H_4BSCS^+ (4a). The C_1 symmetry structure 4a again contains a 3c-2e bond. The complexation of BH_4^+ and CS_2 to give 4a was computed to be exothermic by 41.6 kcal/mol (Scheme 3, Table 2). Dissociation of 4a into 4b and H_2 is endothermic by only 0.1 kcal/mol (Scheme 4, Table 2). This indicates that, similar to 3a, if ion 4a forms, it will also spontaneously dissociate into 4b and H_2 . The interaction of neutral BH₃ with CS₂ leads to a very weak complex, 4c, at the B3LYP/6-311+G** level with a long B-S (2.681 Å) bond.

Vibrational frequencies of the cations 1-4a and 1-4b were calculated at the B3LYP/6-311+G^{**} level and are listed in Table 3. For comparison structures of protonated CO₂, COS, and CS₂ 1-4d are also depicted in Figure 1. Francisco recently calculated the structure of protonated CO₂ at the CCSD(T)/6-311+G(3df,3pd) level.¹⁵ The calculated bond lengths of C-O (H) and C-O are 1.228 and 1.126 Å, respectively, and agree very well with our calculated values of 1.219 and 1.123 Å.

The relative hydride affinities of 1a-d were calculated by using the isodesmic reaction shown in eq 1. For cations 1a and 1b the reactions are exothermic by 181.1 and 186.2 kcal/mol, respectively. On the other hand, for neutral 1c the reaction is exothermic by only 24.1 kcal/mol. In comparison, for protonated CO₂ 1d the reaction is exothermic by 195.9 kcal/mol.

The computational results also shed new light on related experimental studies. The reported⁵ remarkable reactivity of NaBH₄/CF₃SO₃H in reducing CO₂, COS, and CS₂ to methane at room temperature and atmospheric pressure may not be necessary due to protolytic activation of CO₂ (COS and CS₂) which may involve protonation of BH₄⁻ to BH₅ and BH₆⁺ (in some equillibrium), the latter cleaving to BH₄⁺ and H₂. BH₄⁺ being a superacidic Lewis acid complexes CO₂ as well as COS and CS₂ and activates them for subsequent ionic hydrogenation.

Conclusion

Complexes of CO₂, COS, and CS₂ with BH₄⁺ (1–4a) were found to be the stable minima at the density functional theory (DFT) B3LYP/6-31G** level of calculation. The optimized structures show that 1–4a all contain a 3c-2e bond. Formation of ions 1–4a from the complexation of CO₂, COS, and CS₂ with BH₄⁺ were calculated to be exothermic by 26–42 kcal/ mol. The possible dissociation energies of 1–4a into 1–5b and H₂ were also computed. Complexation of CO₂, COS, and CS₂ with neutral BH₃ leads to very weak complexes 1–4c with long B–O or B–S bonds. It is indicated that the complex 1a between CO₂ and BH₄⁺ should be experimentally observable in the gas phase. The BH₄⁺ complexes are significantly activated compared with their parents and readily undergo ionic hydrogenation.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

JA991171A

⁽¹⁵⁾ Francisco, J. S. J. Chem. Phys. 1997, 107, 9039.